Internal Validation of PowerPlex[®] 16 HS with the Applied Biosystems[®] 3500xL Genetic Analyzer

Abstract

An internal validation is performed in order to demonstrate reliability and reproducibility of new instruments and chemistries within a specific laboratory. These studies show that results are accurate and consistent with previous methods. The validation study performed at the Philadelphia Police Department Forensic Science Bureau (PPD) demonstrated the reliability of the PowerPlex[®] 16 HS amplification chemistry and the use of the Applied Biosystems[®] 3500xL to provide accurate and reliable data. The chemistry and instrument are both novel technologies and platforms to the PPD DNA laboratory, thus requiring an internal validation to be performed prior to use with casework samples. All studies were analyzed using Applied Biosystems? GeneMapper[®] ID-X v1.2. Each of these studies demonstrated the proper settings to optimize the use of the amplification chemistry on the genetic analyzer. Overall, this validation demonstrated that consistent and reliable results could be obtained through the use of PowerPlex[®] 16 HS with the AppliedBiosystems[®] 3500xLGenetic Analyzer.

Introduction

An internal validation was requested for the Philadelphia Police Department Forensic Science Bureau through the National Institute of Justice's Technical Assistance Program on the use of the PowerPlex[®] 16 HS amplification chemistry (Promega Corporation, Madison, Wisconsin) with the Applied Biosystems[®] (Foster City, California) 3500xL Genetic Analyzer. The results of the performed validation studies demonstrated the robustness and reliability of the kit and instrument. Based on the findings of these studies, specific settings were recommended to be incorporated into the standard operating procedure of the Philadelphia Police Department Forensic Science Bureau DNA Laboratory. The use of this amplification chemistry and instrument is recommended for use with future casework samples to increase both sensitivity and throughput.

Materials and Methods

The studies performed during the validation of the Applied Biosystems[®] 3500*xL* Genetic Analyzer using PowerPlex 16[®] HS used extracts previously obtained from reference samples as well as previously analyzed casework samples. All data was analyzed using GeneMapper[®] *ID-X* version 1.2.

•Applied Biosystems[®]**3500*xL* Genetic Analyzer •Applied Biosystems[®]** 3130*xL* Genetic Analyzer •PowerPlex^{®^} 16 HS •PowerPlex^{®^} 16 •Promega^{®^} Plexor ^{®^} HY •Applied Biosystems ®** 7500 Internal Validation Studies

- •Target •Injection voltage and time Analytical threshold
- Stochastic threshold
- •Precision
- •Sensitivity
- •Reproducibility and Concordance
- •Contamination
- •Stutter
- •Mixture interpretation
- •Non-Probative samples

Studies not in bold are not discussed in this poster

¹Marshall University Forensic Science Center, 1401 Forensic Science Drive, Huntington, WV 25701 ²Philadelphia Police Forensic Science Bureau, 843-849 North 8th Street, Philadelphia, PA 19123

			get and In			
Determine the ideal DNA target load to inject at a specific						
injection voltage and time to produce reliable results which						
limit artifacts and stochastic events						
• Dilution series was created from a previously analyzed non-						
probative reference sample, ranging between 10 ng. and						
		,		56 ng.	-	
cted under the	icate an	un in tr	e was se	U		
ls and 1.2 kV				•		
kV, 10 seconds		e		U		
KV, IU SCOMUS			id 5 secon			
a ware used to				,		
s were used to	e	•	e de la companya de la compa	•		
3500xL and the		-	-			
ltage and time		e	•	I DNA t	10	
	k height ratio s	ge peak heights eight ratios, and he DNA target	average peak l			
PHR Std. Dev.	Ht. Std. Dev.	Avg. Ht.	sec / kV	1 ng/μL		
0.078	1239.278	4144.936	24 sec / 1.2 kV			
0.147	584.562	1946.500	12 sec / 1.2 kV			
0.217	1218.391 615.286	4134.064 2083.256	10 sec / 3 kV 5 sec / 3 kV			
	Ht. Std.			0 5 mg/ml		
PHR Std. Dev.	Dev.	Avg. Ht.	sec / kV	0.5 ng/μL		
0.088	510.221 248.531	1688.808 792.654	24 sec / 1.2 kV 12 sec / 1.2 kV			
0.212	525.729	1598.590	10 sec / 3 kV			
0.089	257.651	834.295	5 sec / 3 kV			
PHR Std. Dev.	Ht. Std. Dev.	Avg. Ht.	sec / kV	0.25 ng/μL		
0.156	342.673	920.974	24 sec / 1.2 kV			
0.156	176.043	435.038	12 sec / 1.2 kV			
	200 442	961 4491				
0.244	369.443 198.198		10 sec / 3 kV 5 sec / 3 kV			
0.192	198.198	460.423	5 sec / 3 kV			
0.192	198.198	460.423	· · ·	Analy		
0.192	198.198 Thresh	460.423	5 sec / 3 kV		A	
0.192 Cudies at what level a	198.198 Thresh to dete	460.423 Stochas s necess	5 sec / 3 kV tical and hreshold i	alytical t		
0.192 Cudies at what level a l noise	198.198 Thresh to deter om backg	460.423 Stochas s necessar entiated	5 sec / 3 kV tical and hreshold in be different	alytical t peak ca	tru	
0.192 at what level a l noise cation negative	198.198 Thresh to deter om backg of 24 a	460.423 Stochas s necessar entiated ing a ru	^{5 sec / 3 kV} /tical and hreshold i n be differ by analyz	alytical t peak ca culated	tru Ca	
0.192 Cudies at what level a l noise	198.198 Thresh to deter om backg of 24 a	460.423 Stochas s necessation entiated ing a ru), gener	5 sec / 3 kV /tical and hreshold if n be differ by analyz columns	alytical t peak ca culated trols (3	tru Ca cc	
0.192 Cudies at what level a l noise cation negative of the three	198.198 Thresh to deter om backg of 24 a ed from	460.423 Stochas s necessar entiated ing a ru), gener controls	5 sec / 3 kV /tical and hreshold if an be differ by analyz columns on negative	alytical to peak ca culated trols (3 olification	tru Ca cc an	
0.192 Cudies at what level a l noise cation negative of the three FU was selected	198.198 Thresh to deter om backg of 24 a ed from	460.423 Stochas s necessaries rentiated ing a ru), gener controls nalytical	^{5 sec / 3 kV} /tical and hreshold if hreshold if by analyz columns on negative lysis, an a	alytical to peak ca culated trols (3 olification or to ana	tru Ca cc an Pr	
0.192 Cudies at what level a l noise cation negative of the three	198.198 Thresh to deter om backg of 24 a ed from	460.423 Stochas s necessaries rentiated ing a ru), gener controls nalytical	5 sec / 3 kV /tical and hreshold if hreshold if by analyz columns on negative lysis, an an s to allow	alytical to peak ca culated trols (3 olification or to ana all dyes	tru Ca cc an Pr fo	
o.192 Cudies at what level a l noise cation negative of the three FU was selected kground noise"	198.198 Thresh to deter on backg of 24 a ed from reshold c alling of	460.423 Stochas s necessar entiated ing a ru), gener controls halytical for the	5 sec / 3 kV /tical and hreshold if hreshold if by analyz columns on negative lysis, an ar s to allow hreshold	alytical to peak ca culated trols (3 olification or to ana all dyes ve this th	tru Ca cc an Pr fo ab	
o.192 Cudies at what level a l noise cation negative of the three FU was selected kground noise" a base pair size	198.198 Thresh to deter on backy of 24 a ed from reshold c alling of	460.423 Stochas s necessar entiated ing a ru), gener controls halytical for the	5 sec / 3 kV /tical and hreshold if an be differ by analyz columns on negative lysis, an ar s to allow hreshold an Excel	alytical to peak ca culated trols (3 olification or to ana all dyes we this the	tru Ca cc an Pr fo ab Ex	
0.192 Cudies at what level a l noise cation negative of the three FU was selected kground noise" a base pair size rom the primer	198.198 Thresh to deter on backg of 24 a ed from eshold c alling of t, peaks l interfere	460.423 Stochas s necessar entiated ing a ru), gener controls halytical for the spreadsh to preve	5 sec / 3 kV /tical and hreshold if an be differ by analyz columns on negative lysis, an ar s to allow hreshold an Excel removed	alytical to peak ca culated trols (3 olification or to ana all dyes we this the orted to 90 were	tru Ca cc an Pr fo ab Ex of	
o.192 Cudies at what level a l noise cation negative of the three FU was selected kground noise" a base pair size	198.198 Thresh to deter on backg of 24 a ed from eshold c alling of t, peaks l interfere	460.423 Stochas s necessar entiated ing a ru), gener controls halytical for the spreadsh to preve	5 sec / 3 kV /tical and hreshold if an be differ by analyz columns on negative lysis, an ar s to allow hreshold an Excel removed	alytical to peak ca culated trols (3 olification or to ana all dyes we this the orted to 90 were	tru Ca cc an Pr fo ab Ex of	
0.192 Cudies at what level a l noise cation negative of the three FU was selected kground noise" a base pair size rom the primer	198.198 Thresh to deter on backg of 24 a ed from eshold c alling of t, peaks l interfere	460.423 Stochas s necessar entiated ing a ru), gener controls halytical for the spreadsh to preve	5 sec / 3 kV /tical and hreshold if an be differ by analyz columns on negative lysis, an ar s to allow hreshold an Excel removed	alytical to peak ca culated trols (3 olification or to ana all dyes we this the orted to 90 were k as wel	tru Ca cc an Pr fo ab Ex of	
0.192 Cudies at what level a l noise cation negative of the three FU was selected kground noise" a base pair size rom the primer	198.198 Thresh to deter on backg of 24 a ed from eshold c alling of t, peaks l interfere	460.423 Stochas s necessar entiated ing a ru), gener controls halytical for the spreadsh to preve	5 sec / 3 kV /tical and hreshold if an be differ by analyz columns on negative lysis, an ar s to allow hreshold an Excel removed	alytical to peak ca culated trols (3 olification or to ana all dyes we this the orted to 90 were k as wel	tru Ca cc an Pr fo ab Ex of	
0.192 Cudies at what level a l noise cation negative of the three FU was selected kground noise" a base pair size rom the primer	198.198 Thresh to deter on backs of 24 a ed from ceshold of alling of t, peaks l interfere se pairs f	460.423 Stochas s necessar entiated ing a ru), gener controls halytical for the spreadsh to preve	5 sec / 3 kV /tical and hreshold if an be differ by analyz columns on negative lysis, an ar s to allow hreshold an Excel removed l as all pea	alytical to peak ca culated trols (3 olification or to ana all dyes we this the orted to 90 were k as wel	tru Ca cc an Pr fo ab Ex of	
0.192 Cudies at what level a l noise cation negative of the three FU was selected kground noise" a base pair size rom the primer	198.198 Thresh to deter to deter backg of 24 a ed from ceshold of alling of t, peaks l interfere se pairs f $x - Y_{min}$	460.423 Stochas S necessary S national dealed S necessary S n	5 sec / 3 kV /tical and hreshold if hreshold if by analyz columns on negative lysis, an ar s to allow hreshold an Excel removed l as all pea	alytical to peak ca culated trols (3 olification or to ana all dyes we this the orted to 90 were k as wel	tru Ca cc an Pr fo ab Ex of	

Table 2: Calculated analytical threshold for each dye channel.
--

DYE	AVERAGE	STDEV	ΜΙΝ	MAX	Lowest Trough	AT
BLUE	5.07	3.65	1	53	1	104
GREEN	5.58	2.13	1	43	1	84
YELLOW	4.40	1.76	1	39	1	76

Chris Thatch, BS^{1*}, Danielle Imes, MS², Valerie Bostwick, MSFS¹, Pamela J. Staton, PhD¹

Stochastic threshold level is calculated to determine above vhat RFU level a homozygote peak can be identified without Locus D3S1358 he consideration of dropout of a heterozygote sister allele TH01 D21S11 Target study dilution series data at 24 sec / 1.2 kV (the selected D18S51 njection voltage and time) Penta E D5S818

Average peak height ratio for all dye channels and each ndividual channel

> ST= [1/ (Average PHR- 3x STD)] x AT Table 3: Calculated stochastic threshold for ombined dyes and individual dyes

	Stochastic Threshold
All Dyes	323.82
Blue	277.70
Green	352.17
Yellow	349.72

Precision Study

Precision study performed to demonstrate the reliability and legree of precision of the allele size calling

Three consecutive days with a new plate prepared each day ontaining three rows of allelic ladders

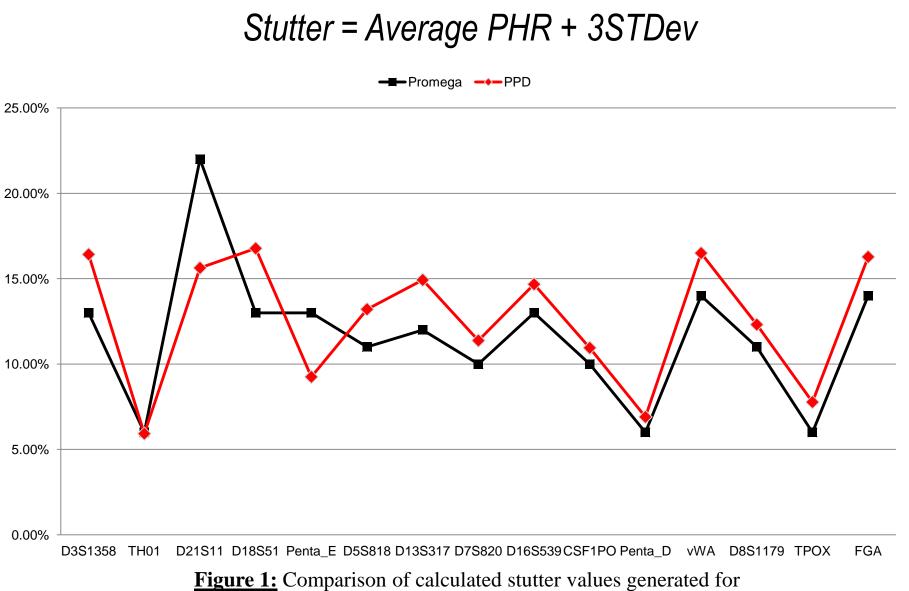
Plate from day one reinjected each day to ensure precise size alling when a plate is stored for multiple days

Sensitivity Study

A sensitivity study was performed to determine the ideal target ONA load within the recommended range determined by the Farget study

Farget dilution series between 0.125 ng. and 1.5 ng.

The sensitivity study consisted of analyzing a dilution series between 0.30 ng/ μ l and 0.025 ng/ μ l. These dilutions were created to target 0.125 ng, 0.25 ng, 0.5 ng, 0.75 ng, 1.0 ng, .25 ng, and 1.5 ng.


Stutter Study

tutter study was performed to indicate the appropriate stutter tios

3 single source reference profiles, each at a target of 0.5 ng. amples were analyzed using GeneMapper[®] ID-X with all rtifacts removed except for stutter peaks

ositive and negative stutter peaks were labeled as stutter as vell as an indication of the allele from which they originated. separated according to marker

The peak height ratio, peak height ratio standard deviation, naximum peak height ratio, and minimum peak height ratio vere then calculated within each marker

D13S317 D7S820 D16S539 CSF1PO Penta D vWA D8S1179 TPOX FGA

D13S317

D16S539

CSF1PO

Penta D vWA

D8S1179

D3S1358

TH01

D21S11

D18S51

Penta E

D5S818

TPOX

D7S820

The PowerPlex[®] 16 HS amplification chemistry was found to produce reliable and reproducible results with the use of the Applied Biosystems[®] 3500*xL* Genetic Analyzer. The reliability and reproducibility of the incorporation of this platform and chemistry are based on the settings and recommendations set forth by the validation studies.

- window

- 360 RFU

- 12/14/2009.
- Rev. 12/2010.

**Life Technologies[™], Foster City CA [^]Promega Corporation[®], Madison WI

I thank Danielle Imes, Joshua Tyson, and the laboratory staff at the Philadelphia Police Forensic Science Bureau for the opportunity and assistance to complete this project.

This project was supported by Cooperative Agreement Number 2009-1J-CX-K111 awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice. The opinions, findings and conclusions or recommendations expressed in this exhibition are those of the authors and do not necessarily reflect the views of the Department of Justice.

the use of PowerPlex[®] 16 HS to the Promega Corporation's recommended stutter values

Table 4: Calculated stutter values and Promega recommended stutter values for minus four stutter in PowerPlex[®] 16 HS

verage	Std. Dev.	Min	Max	Stutter Ratio	Promega Stutter Ratio		
0.10	0.02	0.02	0.16	16%	13%		
0.03	0.01	0.00	0.05	6%	6%		
0.09	0.02	0.03	0.17	16%	22%		
0.09	0.03	0.04	0.18	17%	13%		
0.04	0.02	0.01	0.11	9%	13%		
0.07	0.02	0.03	0.12	13%	11%		
0.07	0.03	0.02	0.15	15%	12%		
0.06	0.02	0.02	0.11	11%	10%		
0.08	0.02	0.03	0.14	15%	13%		
0.06	0.02	0.02	0.09	11%	10%		
0.02	0.02	0.01	0.10	7%	6%		
0.09	0.03	0.01	0.16	16%	14%		
0.07	0.02	0.03	0.12	12%	11%		
0.03	0.01	0.01	0.10	8%	6%		
0.09	0.02	0.05	0.17	16%	14%		

Table 5: Calculated stutter values for plus four stutter in
 $\sim nD1 \sim R 1 \subset IIC$

Average	Std. Dev.	Min	Max	Stutter Ratio
0.02	0.00	0.01	0.03	3%
0.00	0.00	0.00	0.01	1%
0.02	0.01	0.01	0.07	5%
0.01	0.01	0.01	0.06	5%
0.00	0.00	0.00	0.00	0%
0.02	0.01	0.01	0.06	4%
0.03	0.02	0.01	0.12	8%
0.02	0.01	0.01	0.04	3%
0.02	0.01	0.01	0.04	4%
0.02	0.01	0.01	0.05	6%
0.02	0.02	0.01	0.05	8%
 0.01	0.02	0.00	0.11	6%
 0.01	0.00	0.01	0.02	2%
 0.01	0.00	0.01	0.02	2%
0.03	0.02	0.01	0.09	9%

Conclusion

Ideal injection load of 1.0 ng, 0.5 ng, and 0.25 ng. corresponds with an injection voltage and time of 1.2 kV and 24 seconds

Size callings were precise and within the +/- 0.5 basepair

Ideal target range to be between 0.5 ng. and 1.0 ng.

Found to produce peak height ratios above the required 50% peak height ratio cut-off for a single source profile

Analytical threshold of 125 RFU and a stochastic threshold of

Stutter ratios compared to the values recommended by the Promega Corporation. Promega's recommended stutter values were used for the remaining studies

References

Promega Corporation. PowerPlex® 16 HS User guide. Part #TMD022. Rev. 12/2009

2. Promega Corporation. Validation of STR Systems Reference Manual. Printed 2/01. Part # GE053. Applied Biosystems. 3500/3500xL Genetic Analyzer User Bulletin. Stock #: 133UB13-01--

4. Scientific Working Group on DNA Analysis Methods. Revised Validation Guidelines. July 2003. 5. John M. Butler. Advanced Topics in Forensic DNA Typing: Methodology. Academic Press. 2012. Promega Corporation. PowerPlex[®] Matrix Standards, 3100/ 3130 Technical Bulletin. Part #TBD022.

Martin G. Ensenberger et al. Developmental validation of the PowerPlex[®] 16 HS System: An improved 16- locus fluorescent STR multiplex. Forensic Science International: Genetics. 2009. Erica L.R. Butts et al. NIST Validation studies on the 3500 Genetic Analyzer. Forensic Science International: Genetics Supplement Series. 2011.

Acknowledgments