# Evaluation of GeneMapper®/D-X and GeneMarker® HID for use at the NYC OCME

### **Ronald Schmidt, BS**

Marshall University Forensic Science Program September 29, 2011

### New York City Office of the Chief Medical Examiner



## Background

#### DNA Analysis

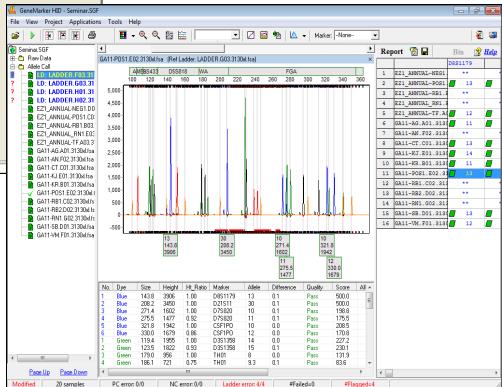
- Complicated, multi-step process
- Will be focusing only on data analysis
- Evaluation a new software systems
  - 3500xl data compatibility
  - Implementation of a new LIMS
  - Reduction in analysis time
  - Availability of mixture assistant tools

# Background

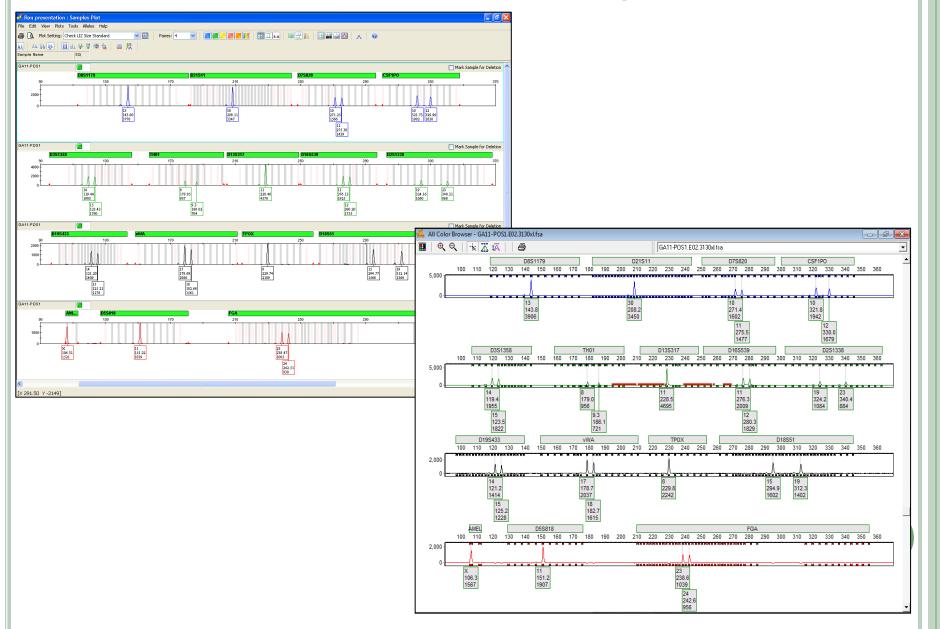
#### Data Analysis Software

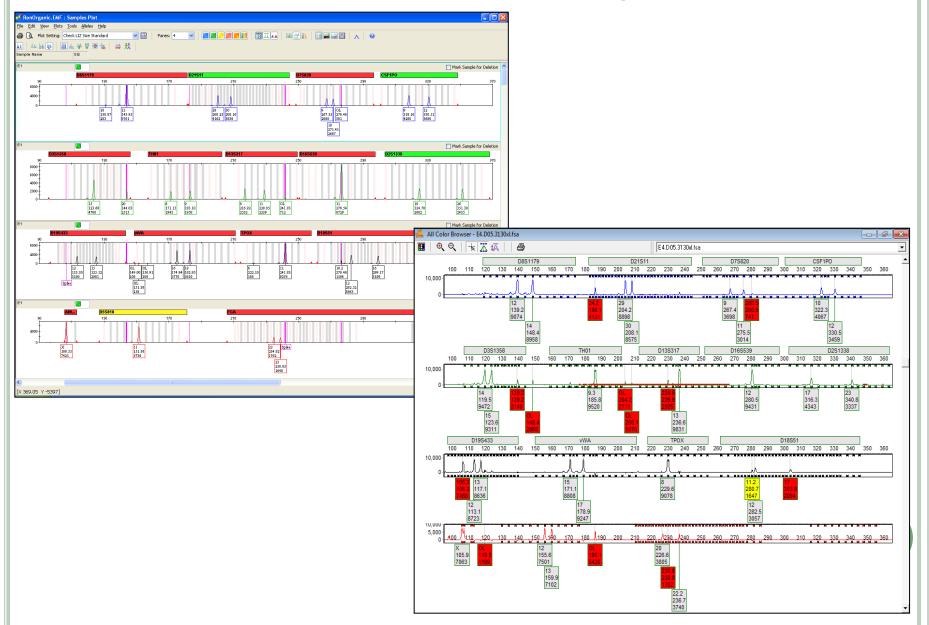
- Displays generated data
- Allows for comparison
- Tangible product for court testimony
- Sample Editing
  - Off-ladder allele
  - Drop-in/Drop-out
  - Pull-up
  - Spikes
  - Peak shoulders
  - Dye artifacts

### Topics


- Introduction to the Software
- Analysis and Edit Procedures
- Sample Concordance
- Ladder Assessment
- Pull-up Correction
- Stutter Filters
- Mixture Assistant Tools Examination
- Result Export Capabilities

#### o GeneMapper®ID-X v1.1


- Applied Biosystems- Foster City, California
- GeneMapper®/Dv.3.2.1 based


- o GeneMarker<sup>®</sup> HID v1.95
  - SoftGenetics- State College, Pennsylvania
  - GeneMarker<sup>®</sup> based

| : <u>A</u> nalysis ⊻ | ew <u>T</u> oo | is <u>A</u> dri | iin <u>H</u> elp |                |               |              |                |                |                |       |     |    |      |     |     |     |  |
|----------------------|----------------|-----------------|------------------|----------------|---------------|--------------|----------------|----------------|----------------|-------|-----|----|------|-----|-----|-----|--|
| H 😼                  | 3              |                 | 🖾 Ш 🛛 🖉          |                | Þ 💣   т       | able Setting | 31XX Data Ar   | nalysis 🔽      | 🗖   🔎 🖨 🖸      | à 🛛 🔼 | 0   |    |      |     |     |     |  |
| oject                | Sample         | s Analy         | sis Summary Ger  | notypes        |               |              |                |                |                |       |     |    |      |     |     |     |  |
| GA11.W1.3            |                | Status          | Sample Name      | Sample Type    | Analysis Meth | iod F        | anel           | Size Standard  | Custom Control | ARNM  | SOS | SQ | SSPK | MX  | OMR | CGQ |  |
|                      | 1              |                 | EZ1_ANNUAL-NE    | Sample         | RonMixture.TA | NP II        | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      | NA  |     |     |  |
|                      | 2              |                 | EZ1_ANNUAL-PC    | Sample         | RonMixture.TA | vp h         | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      |     |     |     |  |
|                      | 3              |                 | EZ1_ANNUAL-RE    | Sample         | RonMixture.T/ | VP II        | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      | NA  |     | ۲   |  |
|                      | 4              |                 | EZ1_ANNUAL-TF    | Sample         | RonMixture.TA | 5P           | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      |     |     |     |  |
|                      | 5              |                 | EZ1_ANNUAL_RM    | Sample         | RonMixture.TA | NP II        | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      | NA  |     |     |  |
|                      | 6              |                 | GA11-AG          | Sample         | RonMixture.TA | 4P           | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      |     |     |     |  |
|                      | 7              |                 | GA11-AN          | Sample         | RonMixture.T/ | vP II        | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      | NA  |     |     |  |
|                      | 8              |                 | GA11-CT          | Sample         | RonMixture.T/ | vP II        | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      |     |     |     |  |
|                      | 9              |                 | GA11-KJ          | Sample         | RonMixture.TA | sp li        | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      |     |     |     |  |
|                      | 10             |                 | GA11-KR          | Sample         | RonMixture.TA | 4P           | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      |     |     |     |  |
|                      | 11             |                 | GA11-POS1        | Sample         | RonMixture.T/ | 4P           | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      |     |     |     |  |
|                      | 12             |                 | GA11-RB1         | Sample         | RonMixture.T/ | VP           | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      | NA. |     |     |  |
|                      | 13             |                 | GA11-RB2         | Sample         | RonMixture.TA | sp li        | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      | NA  |     | 0   |  |
|                      | 14             |                 | GA11-RN1         | Sample         | RonMixture.TA | sp li        | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      | NA  |     | 0   |  |
|                      | 15             |                 | GA11-SB          | Sample         | RonMixture.TA | 4P           | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    |      |     |     |     |  |
|                      | 16             |                 | GA11-VM          | Sample         | RonMixture.T/ | vP II        | lentifiler_v1X | CE_G5_HD_GS500 | None           | 1     |     |    |      |     |     |     |  |
|                      | 17             |                 | LADDER           | Allelic Ladder | RonMixture.T/ | 5P           | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     |    | 1    | NA  | NA  |     |  |
|                      | 18             |                 | LADDER           | Allelic Ladder | RonMixture.TA | sp li        | lentifiler_v1X | CE_G5_HD_GS500 | None           |       |     | 1  |      | NA  | NA  |     |  |
|                      | 19             |                 | LADDER           | Allelic Ladder | RonMixture.TA | 4P 1         | lentifiler_v1X | CE_G5_HD_GS500 | None           |       | 1   | 1  | 1    | NA  | NA  |     |  |
|                      | 20             |                 | LADDER           | Allelic Ladder | RonMixture.TA | VP           | lentifiler v1X | CE G5 HD GS500 | None           |       | ī   | 1  |      | NA  | NA  |     |  |



< b >





### **Analysis of Raw Data**

• Data is loaded into both programs in a similar fashion

• GeneMarker<sup>®</sup> HID is faster than GeneMapper<sup>®</sup> *ID-X* 

• Sample type designation differs between programs

- GeneMapper<sup>®</sup> ID-X
  - Sample types must be designated by the user prior to analysis
- GeneMarker<sup>®</sup> HID
  - Identifiers automatically select sample types
  - The OCME used:
    - o "LADDER" for the allelic ladders and "PE" for positive controls

# **Sample Editing**

#### o GeneMapper®/D

- Initial Analysis Requirements

   Any allele call can be reassigned
   Edit code must be assigned
- Technical Review Requirements
   Edit code must be typed prior to deletion

| 0L 11 13<br>123<br>865 Delete Allele(s) |        |
|-----------------------------------------|--------|
| Rename Allele 🕨                         | ?      |
| History                                 | Custom |
|                                         | 7      |
|                                         | 8      |
|                                         | 9      |
| 11-Buc27_ing_c                          | 10     |
|                                         | 11     |
|                                         | 12     |
| 120 130 140 150                         | 13     |
|                                         | 14     |
|                                         | 15     |
|                                         | 16     |
|                                         | 17     |
|                                         | 18     |
|                                         | 19     |
|                                         | 20     |
|                                         |        |
| Edit Allele Comment                     | 2      |
|                                         |        |
|                                         |        |

Cancel

OK.

# **Sample Editing**

#### o GeneMapper®/D-X

- Initial Analysis Requirements

   Any allele call can be reassigned
   Edit code must be assigned
- Technical Review Requirements
  Edit code must be typed prior to deletion

| B3     P       Delete Label(s)     276.28       Peak Raw Data     Custom Allele Label       Delete Raw Data     Custom Artifact Label       D165639     20                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rename Allele Label     X       Custom Allele Label:                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reason(s) for Change       X         Reason(s) for Change       Attribute         Attribute       RLN.H52_2009-12-03_0075_SAMPLE.86-392_100_abc_F11_011.fsa.ALLELE.35.modified         Old Value       35         [SET_AmpFLSTR_Panels_v1X_PANEL.Identifier_v1X-dup.MARKER.D21511.BASEPAIR.228.82_SAMPLE.86-3]         New Value       35         [SET_AmpFLSTR_Panels_v1X_PANEL.Identifier_v1X-dup.MARKER.D21511.BASEPAIR.228.82_SAMPLE.86-3]         Enter the Reason(s) for Change:         1 |
| OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

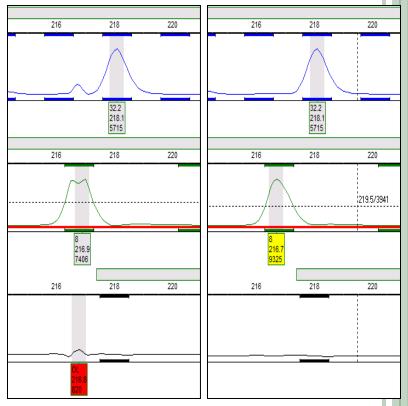
# **Sample Editing**

#### o GeneMarker<sup>®</sup> HID

- Initial Analysis Requirements
  - No allele call reassignment
  - Edit code is not necessary
- Technical Review Requirements
   Call can be deleted without analyst input

|                                         | Edit Allele<br>Edit Comments                         |                      |  |
|-----------------------------------------|------------------------------------------------------|----------------------|--|
| lı                                      | Insert Allele<br><b>Delete</b><br>Undelete           | Del<br>Shift+Del     |  |
|                                         | Confirm<br>Unconfirm<br>Confirm All<br>Unconfirm All | Ctrl+M<br>Ctrl+Alt+M |  |
| 22<br>234.5<br>1175<br><mark>2</mark> 4 | Show Columns<br>Copy Table<br>View History           | Ctrl+C               |  |
| 24<br>20                                | 2.6<br>)2                                            |                      |  |

| Edil | t Allele Comments         | × |
|------|---------------------------|---|
| C    | Comments:                 |   |
|      | 1                         |   |
| ſ    | Comment Templates         |   |
|      | 1                         |   |
|      | 3                         |   |
|      | 4                         |   |
|      | 5                         |   |
|      | 6<br>7                    |   |
|      | 8                         |   |
|      | 9                         |   |
|      | ×                         |   |
|      | <u>O</u> K <u>C</u> ancel |   |
|      |                           |   |
|      |                           |   |
|      |                           |   |


# Oversaturated Peaks GeneMapper®/D

- Camera oversaturation is displayed by the presence of a pink indicator line
  - This line will cross all color channels
  - Provides possible reason for OL allele calls
  - Warns analysts when peak height ratios might be misrepresented
- GeneMapper<sup>®</sup>*ID-X* retains this feature



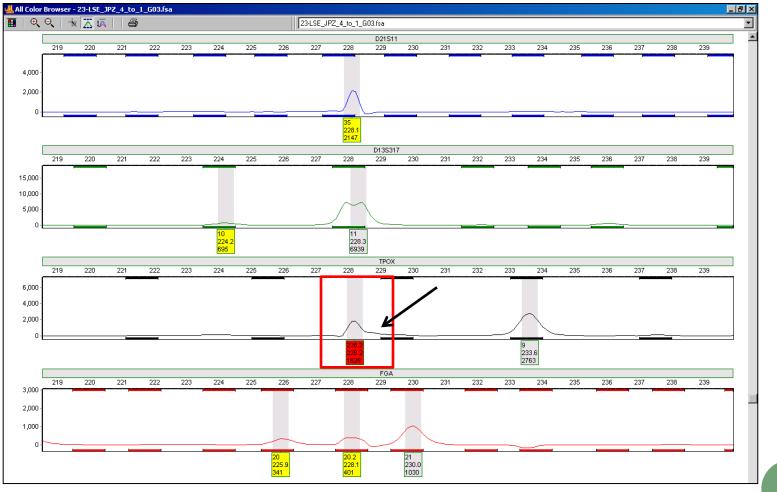
# **Oversaturated Peaks GeneMarker<sup>®</sup> HID**

- Saturated Peak Repair
  - Identification of oversaturation
     Removes pull-up peaks
     Augments offending peak
  - In/Out of bin peaks removed
  - Some pull-up peaks remain
  - All allele calls are maintained
     n= 30 single source samples



# **Oversaturated Peaks GeneMarker<sup>®</sup> HID**

• Goal- determine if repair affects peak height ratios


- n = 6 single source samples, 100 pg, ID31
- Normal injection with option enabled
- Low injection without the option enabled

| No Peaks Repaired   | Average Ratio Difference | 0.03 |
|---------------------|--------------------------|------|
| n=35                | Standard Deviation       | 0.05 |
| One Peak Repaired   | Average Ratio Difference | 0.12 |
| n=22                | Standard Deviation       | 0.12 |
| Both Peaks Repaired | Average Ratio Difference | 0.06 |
| n=16                | Standard Deviation       | 0.05 |

- 10 of 82 loci, the major peak flipped with the repair option 12.1%
- 4 of 82 loci, the peak height ratio was decreased past 0.50 4.8%

Saturated repair does not significantly affect peak height ratios

### **Movement of pull-up edits**



### **Movement of pull-up edits**



# **Movement of pull-up edits**

• Goal- assess frequency of occurrence

- n = 49 samples, 253 total repaired peaks examined
- 13 peaks left a residual peak after repair- 5.1%
- The residual peak moved out of a bin 3 times
- The residual peak never moved into a bin

| Average Before Repair | 0.1 |
|-----------------------|-----|
| Standard Deviation    | 0.1 |
| Average After Repair  | 0.6 |
| Standard Deviation    | 0.1 |

#### Difference Between Peaks (bp)

# **Change in Peak Heights**

Low Copy Number typing relies on peak height levels

• Original protocols were designed using old systems

• AB GeneScan<sup>®</sup>/Genotyper <sup>®</sup>

• Goal- determine how peak height levels compared

- Average height levels were averaged across samples
- Compared with GeneScan<sup>®</sup>/Genotyper<sup>®</sup> values
- n = 24 single source samples

| System                                   | % change (RFUs) |
|------------------------------------------|-----------------|
| GeneMapper <sup>®</sup> /D v3.2.1        | -3.00%          |
| GeneMapper <sup>®</sup> <i>ID-X</i> v1.1 | -2.80%          |
| GeneMarker <sup>®</sup> HID v1.95        | -0.38%          |

# **Sample Edits**

• Goal- determine optimal system and parameters for reduction of inaccurate allele calls and analysis time

• n = 24 (n = 12, 50pg; n = 12 100pg) ID31

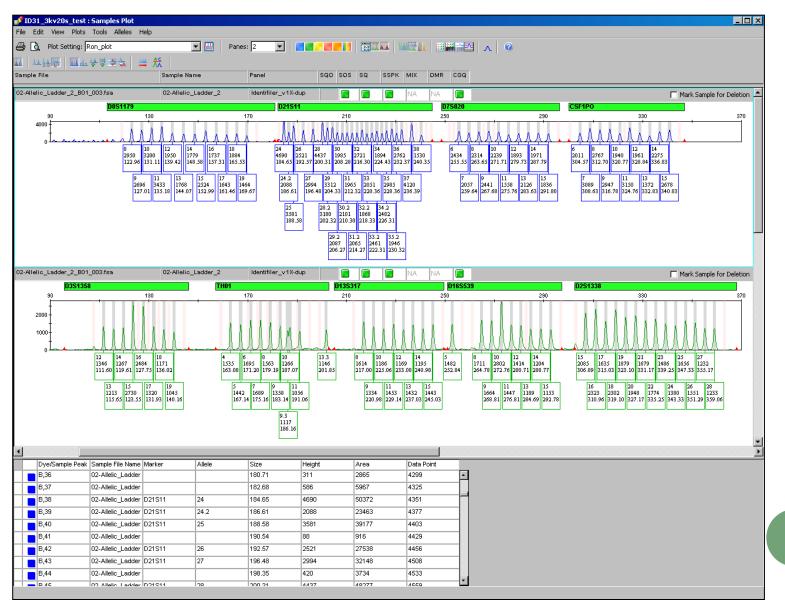
|                      | <u>50</u>            | pg samples                                | <u>10</u>            | <u>Opg samples</u>                        |
|----------------------|----------------------|-------------------------------------------|----------------------|-------------------------------------------|
|                      | GMID-X<br># of edits | GeneMarker HID<br>(w/o repair) # of edits | GMID-X<br># of edits | GeneMarker HID<br>(w/o repair) # of edits |
| Average              | 5.4                  | 8.8                                       | 17.5                 | 23.4                                      |
| Standard Deviation   | 3.1                  | 3.5                                       | 3.8                  | 5.6                                       |
| Differences in edits |                      | 3.4                                       |                      | 5.9                                       |
| % Difference         |                      | 63.1                                      |                      | 33.8                                      |

|                      | <u>50</u>  | og samples             | <u>100</u> | <u> Opg samples</u>    |
|----------------------|------------|------------------------|------------|------------------------|
|                      | GMID-X     | GeneMarker HID         | GMID-X     | GeneMarker HID         |
| r                    | # of edits | (w/ repair) # of edits | # of edits | (w/ repair) # of edits |
| Average              | 5.4        | 4.4                    | 17.5       | 4.8                    |
| Standard Deviation   | 3.1        | 1.8                    | 3.8        | 2.8                    |
| Differences in edits |            | -1.0                   |            | -12.7                  |
| % Difference         |            | -18.5                  |            | -72.9                  |

# Allele Calls in Mixtures

• Goal- test peak calling algorithms at extreme input

- Allele calls in mixtures were analyzed
- Compared with GeneScan<sup>®</sup>/Genotyper<sup>®</sup> values
- n = 22, 25 pg 1:5:5, 5:1:1 mixtures, ID31
- o GeneMapper®/D-X
  - Gained 1 peak that was drop-out in GeneScan<sup>®</sup>/Genotyper<sup>®</sup>


#### • GeneMarker<sup>®</sup> HID

- Gained 3 peaks that were previously drop-out
- Lost 2 peaks that were previously drop-in
- Lost 1 accurate allele call- new drop-out

### **Allelic Ladders**

- Low Copy Number typing will stress any system
- Ladder samples are a necessary control for DNA typing
- The systems deal with ladders in different manners
- o GeneMapper®ID
  - All ladders examined passed requirements
- o GeneMapper®ID-X
  - All ladders examined passed requirements

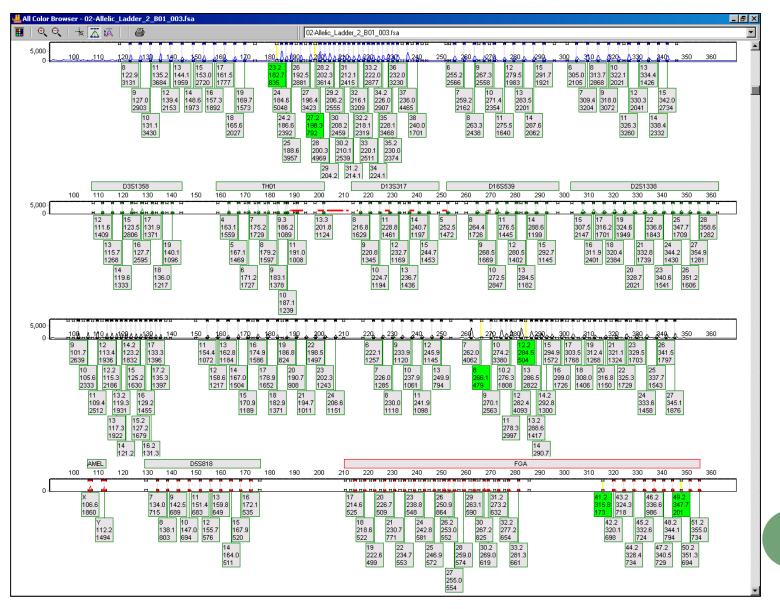
### **GeneMapper<sup>®</sup> ID-X Ladders**



### **Allelic Ladders**

• Low Copy Number typing will stress any system

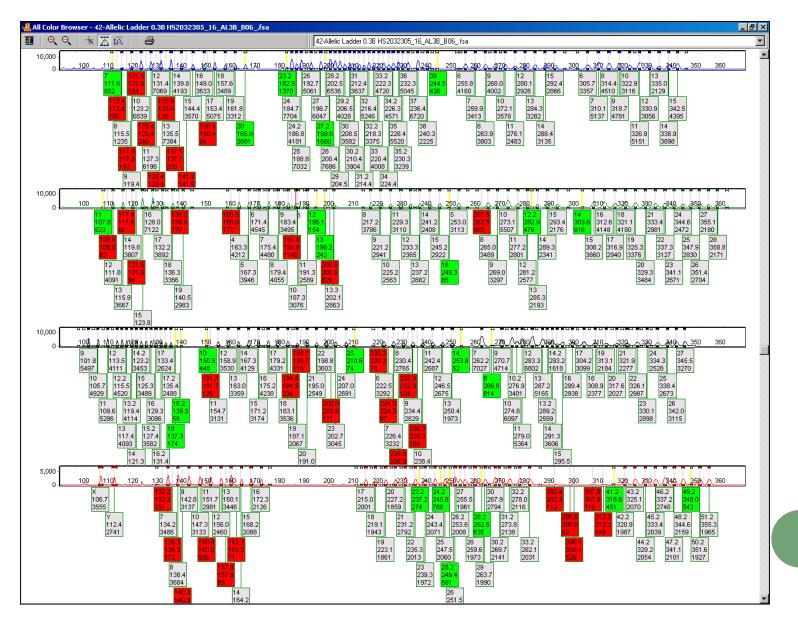
- Ladder samples are a necessary control for DNA typing
- The systems deal with ladders in different manners


o GeneMapper®ID

- All ladders examined passed requirements
- GeneMapper®/D-X
  - All ladders examined passed requirements
- GeneMarker<sup>®</sup> HID
  - Several issues arose with the initial version of the software

### **Allelic Ladders**

- GeneMarker<sup>®</sup> HID
- o ID31 normal injection parameter
  - All published peaks are present
  - Peaks are present in virtual allele bins


### **GeneMarker<sup>®</sup> HID Ladders**



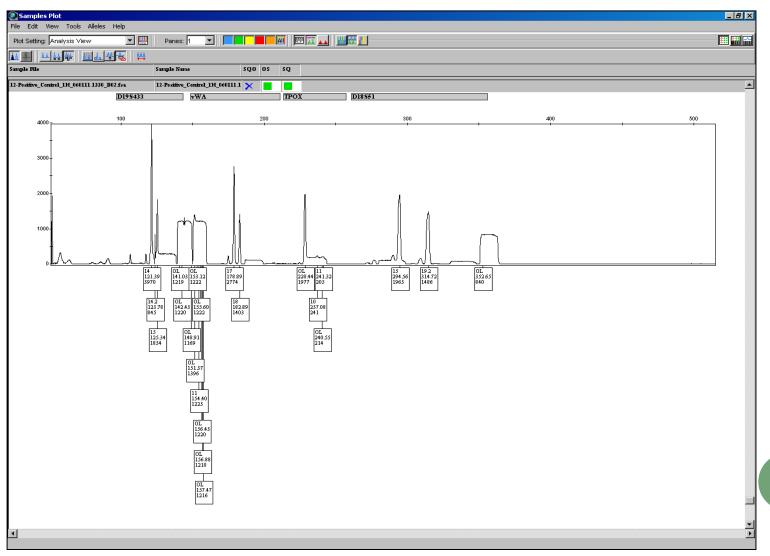
### **Allelic Ladders**

- GeneMarker<sup>®</sup> HID
- o ID31 normal injection parameter
  - All published peaks are present
  - Peaks are present in virtual allele bins
- o ID31 high injection parameter
  - 12 ladders failed- n = 63, 19%
  - Not all published peaks are present
  - Peaks are present in virtual allele bins
  - Peaks were present outside of bins

### **GeneMarker<sup>®</sup> HID Ladders**



### **GeneMarker<sup>®</sup> HID Ladders**


- GeneMarker<sup>®</sup> HID
- o ID31 high injection parameter
  - Programmers provided the OCME with a new version
  - All ladders passed- used to generate bin offsets
- Other system high injection ladders were tested
  - ID28 ladders passed
  - Yfiler<sup>®</sup> ladders passed

# Pull-up Correction in Positive Control

• Positive control- high injection parameters

- Contain distorted peak shapes and extra allele calls
- Results from pull-up of the internal size standard
- Documented in GeneMapper<sup>®</sup>ID
- Maintained in GeneMapper<sup>®</sup>*ID-X*
- Resolved in GeneMarker<sup>®</sup> HID
   Pull-up correction algorithm applied when data analysis is run

# Pull-up Correction in Positive Control



# Pull-up Correction in Positive Control

| •                  | e, | ×  | $\mathbb{Z}$ | ŧ⊼ |     | 8   | 6        |                  |         |          |    |          |          |     |               |           |     |     | 1:  | 2-Po | sitive   | _Cor        | ntrol_ | 1H_1 | 0601 | 11.1        | 330_ | D02               | .fsa        |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
|--------------------|----|----|--------------|----|-----|-----|----------|------------------|---------|----------|----|----------|----------|-----|---------------|-----------|-----|-----|-----|------|----------|-------------|--------|------|------|-------------|------|-------------------|-------------|--------------------|------------------|------------------|-----------|-------------------|--------------|----------|------|-----|-----|------|-------|------|-----|-----|----|-----|-----|-----|---------|-----|--|
|                    |    |    |              |    |     | D   | 195      | 433              |         |          | [  |          |          |     | ~~            |           |     | _   |     |      |          | TPC         | X      |      |      |             |      |                   |             | 0                  | 1859             | 51               |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
|                    | 60 | 70 | 80           | 90 |     | 110 |          |                  |         |          | 15 | 50 '     | 160      | 170 | 180           | 19        | 0 2 | 00  | 210 | 22   | 02       | 30<br># #   | 240    | 250  | 26   | 50 :<br>• • | 270  | 280<br><b>ਸ ਸ</b> | 29<br>0 7 8 | 0 3                | 300<br>141 - 141 | 310              | 320       | ) 33<br>• • • • • | 30 (<br>87 ) | 340      | 350  | 360 | 370 | ) 38 | 30 39 | 90 · | 400 | 410 | 42 | 0 4 | 130 | 440 | 450     | 460 |  |
| 4,800-             |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 4,600 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 4,400-             |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 4,200 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 4,000 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 3,800 -<br>3,600 - |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
|                    |    |    |              |    |     |     |          | i.               |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 3,400 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 3,200 -<br>3,000 - |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 2,800 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 2,600 -<br>2,600 - |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 2,400 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 2,200 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 2,000 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| ,800 -             |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          | L           |        |      |      |             |      |                   |             | 4                  |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| ,600 -             |    |    |              |    |     |     |          | 1.               |         |          |    |          |          |     |               |           |     |     |     |      |          | 1           |        |      |      |             |      |                   |             | 1                  |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 400                |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             | 1                  |                  | Å                |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| ,200               |    |    |              |    |     |     |          | IJ               |         |          |    |          |          |     |               | ļ         |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  | -                |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| ,000               |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          | ß           |        |      |      |             |      |                   |             | -lì                |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 800                |    |    |              |    |     |     |          |                  |         |          |    |          |          |     | 1             |           |     |     |     |      |          |             |        |      |      |             |      |                   |             | -11                |                  | - 11             |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 600                |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 400-               |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          | Į.          |        |      |      |             |      |                   |             |                    |                  | - JI             |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 200 -              | N  |    |              |    |     | Į.  | 1        | W                |         |          |    |          |          |     | ιШ            | l –       |     |     |     |      |          |             |        |      |      |             |      |                   |             | .11                |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 0-                 | ĽΛ |    | $\sim$       | Λ_ | ~~~ | ٨., | ωĄ       | 14               | _       | $\neg c$ | h  | <u>/</u> | <u>م</u> |     | NΛ            | հ         |     | \r  | ~~  |      |          |             | ~      | \r   |      |             |      | vv                |             | νų                 | 5                | N                | L         | v                 |              | <u> </u> | ٦r   |     |     |      |       |      |     |     |    |     |     |     | <u></u> |     |  |
| -200 -             |    | ų. |              |    | 1   |     |          | 11               |         | Í        | '  |          |          |     |               | 1         |     | U . |     |      | ļ        | (           |        | 1    |      |             |      | ٧V                |             |                    |                  |                  |           |                   |              | II –     |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| -400               |    |    |              |    |     |     |          | 1                |         |          |    |          |          |     |               |           |     | Į.  |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              | 1        |      |     |     |      |       |      | U   |     |    |     |     |     | ۱í -    |     |  |
| -600               |    |    |              |    | ľ   |     |          |                  |         |          |    | 1        |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              | Ų.       | - Ií |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| -800 -             |    |    |              |    |     |     |          |                  |         |          |    | 1        |          |     |               |           |     |     |     |      |          |             |        | 1    |      |             |      |                   |             |                    | 1                |                  |           |                   |              | 1        | Ų    |     |     |      |       |      | Ų   |     |    |     |     |     | V       |     |  |
| 1,000 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     | 1   |     |      |          |             |        | I.   |      |             |      |                   |             |                    |                  |                  |           |                   |              | 1        |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| ,200               |    |    |              |    | 1   |     |          |                  |         |          |    |          | 1        |     |               |           |     | ĺ.  |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 400-               |    |    |              |    |     |     |          |                  |         |          |    |          | •        |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 1,600              |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
| 1,800 -            |    |    |              |    |     |     |          |                  |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
|                    |    |    |              |    |     |     | 14       | 4                |         |          | _  |          |          |     | 17            | 1         |     |     |     |      | 8        |             |        |      | *    |             |      |                   |             | 15                 |                  | 19               |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
|                    |    |    |              |    |     |     | 10<br>38 | 4<br>21.3<br>312 |         |          |    |          |          |     | 178.9<br>2817 | 9         |     |     |     |      | 23<br>18 | 30.1<br>307 |        |      |      |             |      |                   |             | 15<br>295.<br>1874 | 2<br>1           | 19<br>312<br>148 | 2.8<br>39 |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
|                    |    |    |              |    |     |     |          | 14.2<br>123.     | 7       |          |    |          |          |     | 18            |           |     |     |     |      | _        |             |        |      |      |             |      |                   |             |                    | -                |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
|                    |    |    |              |    |     |     |          | 637              | <u></u> |          |    |          |          |     | 18<br>14      | 2.9<br>32 |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |
|                    |    |    |              |    |     |     |          | 15<br>125        |         |          |    |          |          |     |               |           |     |     |     |      |          |             |        |      |      |             |      |                   |             |                    |                  |                  |           |                   |              |          |      |     |     |      |       |      |     |     |    |     |     |     |         |     |  |

### **Stutter Filters**

GeneMapper<sup>®</sup> IDstutter filters are fixed

- 1 filter allowed per marker
- Position determined by bp value of repeat
- GeneMapper<sup>®</sup>/D-X stutter filters
  - 8 filters can be programmed into each marker
  - Position set independently for each marker
- GeneMarker<sup>®</sup> HID stutter filters
  - 3 filters can be set at each marker
  - N x, N 2x, and N + x positions

### **Stutter Filters**

• AB's Yfiler<sup>®</sup> kit suffers with GeneMapper<sup>®</sup>/D filters

- DYS19 is a tetranucleotide repeat
- DYS19 has a known minus 2 stutter artifact
- GeneMapper®*ID-X* 
  - Allows a minus 2 bp filter to be programmed at DYS19

#### • GeneMarker<sup>®</sup> HID

• Requires that the x value be set at 2 bps at DYS19

### **Mixture Assistant Tools**

Mixture Assistant Tools use edited data

- GeneMapper<sup>®</sup>ID-X- ignores samples with OL peaks
- GeneMarker<sup>®</sup> HID- assigns OL peaks to contributors
- Data for systems is exportable for use in MS Excel
- Systems provide multiple allele combinations
- Systems calculate most likely allele combinations
  - User defined settings
  - Residual score
  - A low score makes the combination more likely

### GeneMapper®/D-X

| kture  | Analysis R    | esults Vie     | wer: Minim               | ım Numbe       | r of Contrib    | outors = 2         |              |            |          |              |                           |                 |          |              |                       | _  |
|--------|---------------|----------------|--------------------------|----------------|-----------------|--------------------|--------------|------------|----------|--------------|---------------------------|-----------------|----------|--------------|-----------------------|----|
| Sam    | nple File: 3  | 85-DH_JR_      | ACB_511_a_C              | :05_005.fsa    |                 |                    |              |            |          |              |                           |                 |          | Panel        | : Identifiler_v1X-dup |    |
|        | Folder: H     |                |                          |                |                 |                    |              |            |          |              |                           |                 |          |              |                       |    |
| Sam    | ple Name :    | 35-DH_JR_      | _ACB_511_a               |                |                 |                    |              |            |          | -            |                           |                 | << Prev  | rious Sample | Next Sample           | >> |
| ure A  | nalysis Resul | Its RMP S      | tatistics: $\subset 1$ ( | Major) RMF     | P Statistics: C | 2 (Minor) CPI/CPE  | Statistics   | LR. Statis | tics     |              |                           |                 |          |              |                       |    |
|        | 📕 Average     | e Mx: 0.27     | 6 Residual               | Threshold: C   | ).040 Filter    | r by Marker: All   | ▼ Kn         | own: None  |          |              |                           | 🔲 Sample Review | Complete |              |                       |    |
| elect  | ed Genotype   | Combinati      | ions                     |                |                 |                    |              |            |          |              |                           |                 |          |              |                       |    |
|        |               |                |                          | C2 (Minor)     | Inconclusive    | Known Genotype, AD | BI M×        | Residual   | PHR1     | PHR2         | Residual Status PHR Stati | IS IQ           |          |              |                       |    |
|        | D851179       | 13,13          |                          | 10,13          |                 |                    | N/A          | 0.005      | N/A      | N/A          | NA                        |                 |          |              |                       |    |
|        | D851179       | <u> </u>       |                          | 10,10          |                 |                    | ·            | 0.015      | <u> </u> | N/A          | NA NA                     |                 |          |              |                       |    |
|        |               | 28,32          |                          | 30,33.2        |                 |                    |              | 0.026      |          | 0.968        |                           |                 |          |              |                       |    |
|        |               | 8,10           | <u> </u>                 | 8,11           |                 |                    | ·            | 0.021      |          | 0.696        |                           |                 |          |              |                       |    |
|        |               | 8,8            |                          | 10,11          |                 |                    | ·            | 0.031      | <u> </u> | 0.631<br>N/0 | -                         |                 |          |              | Sort                  |    |
|        |               | 10,10<br>10,13 |                          | 13,13<br>10,10 |                 |                    | 0.290<br>N/A | 0.000      | <u> </u> | N/A<br>N/A   | NA NA                     |                 |          |              | Sort                  |    |
|        |               | 10,13          |                          | 10,10<br>10,F1 |                 |                    | 0.207        | 0.010      | ļ        | 0.515        |                           |                 |          |              | 🕙 Unselect            |    |
|        | D351358       |                | <u> </u>                 | 15,16          |                 |                    | N/A          | 0.002      |          | 0.869        |                           |                 |          | M            | issing Markers        |    |
| )      |               | 15,16          |                          | 16,16          |                 |                    | N/A          | 0.021      | <u> </u> | N/A          | NA                        |                 | -        |              |                       |    |
|        |               | 15,16          |                          | 16,F1          |                 |                    |              | 0.023      |          |              |                           |                 |          |              |                       |    |
|        | TH01          | 7,10           |                          | 10,10          |                 |                    | N/A          | 0.000      | N/A      | N/A          | NA                        |                 |          |              |                       |    |
|        | TH01          | 10,10          |                          | 7,7            |                 |                    | 0.369        | 0.017      | N/A      | N/A          | NA                        |                 |          |              |                       |    |
| 1      | TH01          | 7,10           |                          | 10,F1          |                 |                    | 0.024        | 0.032      | 0.598    | 0.598        |                           |                 |          |              |                       |    |
| 5      | TH01          | 7.10           |                          | 7.10           | -               | i na               | N/A          | 0.034      | 0.584    | 0.584        |                           |                 |          |              |                       |    |
| Filter | on IQ:        |                |                          | own Match:     |                 | Known Genotype A   | DBI M×       | Residua    | I PHR1   | PHR2         | Residual Status PHR Sta   | tus IO          |          |              |                       |    |
|        | D851179       |                |                          | 10,F1          |                 |                    | N/A          | 0.023      | N/A      | 0.078        |                           | <u> </u>        |          |              |                       |    |
|        | D851179       | 10,13          |                          | 13,13          |                 |                    | N/A          | 0.060      | N/A      | N/A          | I NA                      |                 |          |              |                       |    |
|        | D851179       | 10,13          |                          | 13,F1          |                 |                    | N/A          | 0.136      | 0.250    | 0.250        | 0                         |                 |          |              |                       |    |
|        | D851179       | 10,13          |                          | 10,13          |                 |                    | N/A          | 0.194      |          | 2 0.232      |                           |                 |          |              |                       |    |
|        | D851179       | · ·            |                          | 10,13          |                 |                    | N/A          | 0.213      |          | 0.250        |                           |                 |          |              | Sort                  |    |
|        |               | 10,13          |                          | F1,F2          |                 |                    |              | 3 0.245    | _        | 2 N/A        | <b>O</b>                  |                 |          |              | 🚱 Select              |    |
|        |               | 10,13          |                          | F1,F1          |                 |                    | N/A          | 0.291      |          | 2 N/A        | •                         |                 |          |              |                       |    |
|        | D851179       |                |                          | 10,F1          |                 |                    | N/A          | 0.306      |          | 3 0.228      |                           |                 |          |              |                       |    |
|        | D851179       | · ·            |                          | 10,F1          |                 |                    |              | 7 0.320    |          | 5 0.015      |                           |                 |          |              |                       |    |
| 0      |               | 13,F1          |                          | 10,10          |                 |                    | N/A          | 0.321      |          | 3 N/A        |                           |                 |          |              |                       |    |
| 1      | D851179       | 10,13          |                          | 10,10          |                 |                    | N/A          | 0.404      | N/A      | N/A          | MA NA                     |                 |          |              |                       |    |
|        |               |                |                          |                |                 |                    |              |            |          |              |                           |                 |          |              |                       |    |

### **GeneMarker<sup>®</sup> HID**

| e Contributor                                              | No.     | Marker       | Major   | Minor   | Major Ma | k Residual | I Major HIM | Minor HIM |   | Trace | Data Repo | ort               |          |            |               |               |    |
|------------------------------------------------------------|---------|--------------|---------|---------|----------|------------|-------------|-----------|---|-------|-----------|-------------------|----------|------------|---------------|---------------|----|
| o Contributors                                             | 1-1     | D8S1179      | 13,13   | 10,13   | 0.63     | 0.0026     |             |           |   |       | Marker    | Mixture           | PI       | PE         | Contributor 1 | Contributor 2 | IB |
| 42-091709.1600PE3H_B06_004                                 | 1-2     | D8S1179      | 13,13   | 10,10   | 0.81     | 0.0261     |             |           |   |       | D8S1179   | 10,13             | 0.13532  | 0.86468    |               |               |    |
| 35-DH_JR_ACB_511_a_C05_005                                 | 1-3     | D8S1179      | 13,13   | 10,Q    | 0.80     | 0.0302     |             | 0.08      |   |       | D21S11    | 28,30,32,33.2     | 0.15716  | 0.84284    |               |               |    |
| 36-DH_JR_ACB_511_b_D05_007                                 | 1 4     | D8S1179      | 10,13   | 13,13   | 0.37     | 0.0540     |             |           |   |       | D7S820    | 8,10,11           | 0.45082  | 0.54918    |               |               |    |
| 37-DH_JR_ACB_511_c_E05_009<br>39-MLD_AJT_ACB_155_a_G05_013 | 1-5     | D8S1179      | 10,13   | 13,Q    | 0.93     | 0.1381     | 0.25        | 0.25      |   |       | CSF1P0    | 10,13             | 0.08576  | 0.91424    |               |               |    |
| 40-MLD_AJT_ACB_155_b_H05_015                               | 16      | D8S1179      | 10,13   | 10,13   |          | 0.1975     | 0.23        | 0.23      |   |       | D3S1358   | 15,16             | 0.33474  | 0.66526    |               |               |    |
| 43-MLD_AJT_ACB_155_c_C06_006                               | 1-7     | D8S1179      | 10,13   | Q,Q     | 0.99     | 0.3148     | 0.23        |           |   |       | TH01      | 7,10              | 0.08787  | 0.91213    |               |               |    |
| 45-MLD_AJT_ACB_511_a_E06_010                               | 18      | D8S1179      | 10,13   | 10,Q    | 0.98     | 0.3241     | 0.22        | 0.22      |   |       | D135317   | 8,10              | 0.04903  | 0.95097    |               |               |    |
| 46-MLD_AJT_ACB_511_b_F06_012                               | 1-9     | D8S1179      | 10,13   | 10,10   |          | 0.4311     | 0.23        |           |   |       | D16S539   | 8,10,11,13        | 0.34725  | 0.65275    |               |               |    |
| 47-MLD_AJT_ACB_511_c_G06_014                               | 1 10    | D8S1179      | 10,10   | 13,13   | 0.19     | 0.5289     |             |           |   |       | D2S1338   | 17,19,23          | 0.22225  | 0.77775    |               |               |    |
| ee or more Contributors                                    | 1 11    | D8S1179      | 10,10   | 13,Q    | 0.18     | 0.7120     |             | 0.02      |   |       | D195433   | 13,13.2,14.2,15.2 |          | 0.86989    |               |               |    |
|                                                            | 1 12    | D8S1179      | 10,10   | 10,13   |          | 0.8825     |             | 0.23      |   | 11    | vWA       | 14,19             | 0.02699  | 0.97301    |               |               |    |
|                                                            | 2-1     | D21S11       | 28,32   | 30,33.2 | 0.65     | 0.0231     | 0.53        | 0.95      |   | 12    | TPOX      | 10,11             | 0.09433  | 0.90567    |               |               |    |
|                                                            | 2-2     | D21S11       | 28,30   | 32,33.2 | 0.60     | 0.0399     | 0.43        | 0.77      |   |       | D18551    | 14,15             | 0.10796  | 0.89204    |               |               |    |
|                                                            | 2 - 3   | D21S11       | 28,33.2 | 30,32   | 0.60     | 0.0434     | 0.41        | 0.81      |   | 14    | AMEL      | X X               |          |            |               |               |    |
|                                                            | 2 4     | D21S11       | 30,32   | 28,33.2 | 0.40     | 0.1204     | 0.81        | 0.41      |   |       | D5S818    | 9,12              | 0.15434  | 0.84566    |               |               |    |
|                                                            | 2 - 5   | D21S11       | 32,33.2 | 28,30   | 0.40     | 0.1238     | 0.77        | 0.43      |   |       | FGA       | 22,24,27          | 0.11755  | 0.88245    |               |               |    |
|                                                            | 2 - 6   | D21S11       | 30,33.2 | 28,32   | 0.35     | 0.1406     | 0.95        | 0.53      |   | 10    | Tun       | Cumulative:       | 5.94E-14 | 1-5.94E-14 |               |               |    |
|                                                            | 3-1     | D7S820       | 8,10    | 8,11    | 0.61     | 0.0177     | 0.70        | 0.70      |   |       |           | Comaidave.        | 0.046 14 | 10.046.14  |               |               |    |
|                                                            | 3-2     | D7S820       | 8,8     | 10,11   | 0.59     | 0.0227     |             | 0.64      |   |       |           |                   |          |            |               |               |    |
|                                                            | 33      | D7S820       | 8,11    | 8,10    | 0.39     | 0.0543     | 0.70        | 0.70      |   |       |           |                   |          |            |               |               |    |
|                                                            | 3 4     | D7S820       | 8,10    | 11,Q    | 0.82     | 0.0775     | 0.43        | 0.15      |   |       |           |                   |          |            |               |               |    |
|                                                            | 3-5     | D7S820       | 8,10    | 11,11   | 0.84     | 0.0864     | 0.43        |           |   |       |           |                   |          |            |               |               |    |
|                                                            | 3-6     | D7S820       | 8,11    | 10,10   | 0.75     | 0.0956     | 0.27        |           |   |       |           |                   |          |            |               |               |    |
|                                                            | 3-7     | D7S820       | 8,11    | 10,Q    | 0.73     | 0.1132     | 0.27        | 0.10      |   |       |           |                   |          |            |               |               |    |
|                                                            | 3 - 8   | D7S820       | 8,10    | 10,11   | 0.79     | 0.1189     | 0.34        | 0.34      |   |       |           |                   |          |            |               |               |    |
|                                                            | 3-9     | D7S820       | 10,11   | 8,8     | 0.41     | 0.1293     | 0.64        |           |   |       |           |                   |          |            |               |               |    |
|                                                            | 3 10    | D7S820       | 8,11    | 10,11   | 0.70     | 0.1831     | 0.19        | 0.19      |   |       |           |                   |          |            |               |               |    |
|                                                            | 3 11    | D7S820       | 10,11   | 8,Q     | 0.40     | 0.2450     | 0.64        | 0.04      |   |       |           |                   |          |            |               |               |    |
|                                                            | 3-12    | D7S820       | 10,11   | 8,10    | 0.21     | 0.2906     | 0.34        | 0.34      |   |       |           |                   |          |            |               |               |    |
|                                                            | 3-13    | D7S820       | 10,11   | 8,11    | 0.30     | 0.3180     | 0.19        | 0.19      |   |       |           |                   |          |            |               |               |    |
|                                                            | 3-14    | D7S820       | 10,10   | 8,11    | 0.25     | 0.3939     |             | 0.27      |   |       |           |                   |          |            |               |               |    |
|                                                            | 3 15    | D7S820       | 11,11   | 8,10    | 0.16     | 0.4947     |             | 0.43      |   |       |           |                   |          |            |               |               |    |
|                                                            | 4 1     | CSF1P0       | 10,10   | 13,13   | 0.71     | 0.0001     |             |           |   |       |           |                   |          |            |               |               |    |
|                                                            | 4-2     | CSF1P0       | 10,13   | 10,10   | 0.58     | 0.0068     |             |           |   |       |           |                   |          |            |               |               |    |
|                                                            | 4 3     | CSF1P0       | 10,13   | 10,Q    | 0.80     | 0.0382     | 0.52        | 0.52      |   |       |           |                   |          |            |               |               |    |
|                                                            | 4 4     | CSF1P0       | 10,10   | 13.0    | 0.66     | 0.0229     |             | 0.25      |   |       |           |                   |          |            |               |               |    |
|                                                            | 4 - 5   | CSF1P0       | 10,10   | 10,13   | 0.42     | 0.0400     |             |           |   |       |           |                   |          |            |               |               |    |
|                                                            | 4 6     | CSF1P0       | 10,13   | 10,13   |          | 0.0869     | 0.41        | 0.41      |   |       |           |                   |          |            |               |               |    |
|                                                            | 4-7     | CSF1P0       | 10,13   | 13,0    | 0.91     | 0.1547     | 0.37        | 0.37      |   |       |           |                   |          |            |               |               |    |
|                                                            | 4 - 8   | CSF1P0       | 10,13   | 0,0     | 0.93     | 0.1554     | 0.41        |           |   |       |           |                   |          |            |               |               |    |
|                                                            | 4-9     | CSF1P0       | 10,13   | 13,13   |          | 0.2570     | 0.41        |           |   |       |           |                   |          |            |               |               |    |
|                                                            | 4 10    | CSF1P0       | 13,13   | 10,10   | 0.29     | 0.3337     |             |           |   |       |           |                   |          |            |               |               |    |
|                                                            | 4 - 11  | CSF1P0       | 13,13   | 10,Q    | 0.27     | 0.4500     |             | 0.10      |   |       |           |                   |          |            |               |               |    |
|                                                            | 4 12    | CSF1P0       | 13,13   | 10,13   |          | 0.6238     |             | 0.41      | - |       |           |                   |          |            |               |               |    |
|                                                            | Q +     |              |         |         | -        |            |             |           |   |       |           |                   |          |            |               |               |    |
|                                                            |         | Ŭ            |         |         |          |            |             |           | L | Comm  | ont       |                   |          |            |               |               |    |
|                                                            | Contril | butor 1: Nor | ie      |         |          | ▼ 🔽 Co     | ntested     |           | ľ | comm  | en.       |                   |          |            |               |               |    |
|                                                            | Contri  | butor 2: Nor | ie      |         |          | 🔻 🔽 Co     | ntested     |           |   |       |           |                   |          |            |               |               |    |
|                                                            | Avera   | ge Major Mx: | 0.700   |         |          |            |             |           |   |       |           |                   |          |            |               |               |    |

### **Mixture Assistant Tools**

• Goal- determine the accuracy of assistant tools

• n = 4, ID28, 4:1

| GeneN         | larker <sup>®</sup> HID | <u>GeneMapper<sup>®</sup>ID-X</u> |                |  |  |
|---------------|-------------------------|-----------------------------------|----------------|--|--|
| Major Donor   | Minor w/ major          | Major Donor                       | Minor w/ major |  |  |
| 16/16         | 13/16*^                 | 16/16                             | 10/16*^~       |  |  |
| 16/16         | 12/16*~                 | 16/16                             | 8/16*^~        |  |  |
| 15/16*        | 11/16*                  | 15/16*                            | 5/16*~         |  |  |
| 16/16 14/16*~ |                         | 15/16*^                           | 9/16*~         |  |  |
| 98.4%         | 78.1%                   | 96.9%                             | 50.0%          |  |  |

\* At least once the correct combination was not the first valid choice

^ At least once the correct combination was not a valid choice

~ At least once the correct combination was not a choice

# **Electropherogram Export**

New system- long term integration with LIMS
Manner of electropherogram export is integral

- GeneMapper<sup>®</sup>*ID* ID31 samples
  - Sorted by color channel and exported separately
  - Results in five documents per sample set
- GeneMapper<sup>®</sup>ID-X retains this problem
- GeneMarker<sup>®</sup> HID offers two solutions
  - Selected samples can be sorted by dye before printing
  - The sorted document can be exported as a .png or .jpeg
  - The sorted document can also be exported as a PDF

### **Exported Data Tables**

Generation of exported data

- GeneMapper<sup>®</sup> ID&ID-X saves export table formats
- GeneMarker<sup>®</sup> HID does not save export table formats

• Report sheets- generated with excel macros

- GeneMapper<sup>®</sup> *ID*&*ID*-*X* table data share export layouts
- GeneMarker<sup>®</sup> HID table data has a different layout
- Available columns
  - GeneMapper<sup>®</sup> *ID*&*ID*-*X* allows user defined columns
  - GeneMarker<sup>®</sup> HID has no sample comment column

|                                          | GeneMapper <sup>®</sup> ID-X           | GeneMarker <sup>®</sup> HID<br>(w/Repair)                          |  |
|------------------------------------------|----------------------------------------|--------------------------------------------------------------------|--|
| Sample Editing                           | More time consuming                    | Less time consuming                                                |  |
| <b>Oversaturated Peaks</b>               | Indicated                              | Repaired - fewer reruns                                            |  |
| Peak Heights as<br>Compared to Genotyper | 3% lower                               | 0.4% lower<br>Gained information                                   |  |
| Number of Sample Edits                   |                                        | Significantly fewer edits                                          |  |
| Allele Calls in Mixtures                 |                                        | Gained more information                                            |  |
| Ladders                                  | All Passing Ladders                    | All Passing Ladders                                                |  |
| Pull-up Correction                       | N/A                                    | Removes pull-up peaks                                              |  |
| Stutter Filters                          | Slightly more<br>customizable          | Useful - but less<br>customizable                                  |  |
| Mixture Assistant Tool                   |                                        | Easier to use<br>More accurate                                     |  |
| Exported Data                            | Separate PDFs per color channel (ID31) | One PDF or Separate<br>.png or .jpeg file per print<br>page (ID31) |  |
| Exported Tables                          | No additional work required            | Additional work required                                           |  |

# **Recommendation: GeneMarker<sup>®</sup> HID**

- Simple analysis and fewer edits provide a reduction in analyst time requirements
- Saturated peak repair prevents re-running of samples- fewer reagents consumed
- Peak recognition algorithms result in a gain of accurate information
- Better functionality with soon to be implemented LIMS

### **Stutter Filters**

• Both systems allow for increased flexibility in stutter filters

- Allows for the removal of the 10% global filter that is currently applied
- Extensive additional validation required
- o Goal-Assess a possible gain of useful information
  - n = 12 mixture samples for each condition
  - Information gained was examined with respect to known profiles

| <u>GeneMarker<sup>®</sup>HID</u> |   |  |  |  |  |  |
|----------------------------------|---|--|--|--|--|--|
| ID28 mixtures                    |   |  |  |  |  |  |
| Lost drop-out 1                  |   |  |  |  |  |  |
| New drop-in                      | 4 |  |  |  |  |  |

| <u>GeneMarker<sup>®</sup>HID</u> |    |  |  |  |  |
|----------------------------------|----|--|--|--|--|
| ID31 touched items               |    |  |  |  |  |
| Lost drop-out                    | 8  |  |  |  |  |
| New drop-in                      | 18 |  |  |  |  |

| <u>GeneMapper®ID-X</u> |   |  |  |  |  |  |
|------------------------|---|--|--|--|--|--|
| ID28 mixtures          |   |  |  |  |  |  |
| Lost drop-out 14       |   |  |  |  |  |  |
| New drop-in            | 2 |  |  |  |  |  |

| <u>GeneMapper<sup>®</sup>ID-X</u> |    |  |  |  |  |  |
|-----------------------------------|----|--|--|--|--|--|
| ID31 touched items                |    |  |  |  |  |  |
| Lost drop-out                     | 8  |  |  |  |  |  |
| New drop-in                       | 19 |  |  |  |  |  |

### **Mixture Assistant Tools**

• Goal- a more extensive study on tool accuracy

• n = 10 samples per mixture ratio

| Gene        | <u>/larker®HID</u> | <u>GeneMarker<sup>®</sup>HID</u> |                |  |  |
|-------------|--------------------|----------------------------------|----------------|--|--|
| 4:1 - 5     | 00pg - ID28        | 2:1 - 500pg - ID28               |                |  |  |
| Major Donor | Minor w/ major     | Major Donor                      | Minor w/ major |  |  |
| 16/16       | 13/16*^            | 13/16*                           | 13/16*         |  |  |
| 16/16       | 12/16*~            | 13/16*^                          | 13/16*^        |  |  |
| 15/16*      | 15/16* 11/16*      |                                  | 13/16*^        |  |  |
| 16/16       | 16/16 14/16*~      |                                  | 12/16*~        |  |  |
| 16/16       | 12/16*             | 14/16*                           | 13/16*^        |  |  |
| 16/16       | 8/16*              | 12/16*                           | 10/16*         |  |  |
| 16/16       | 11/16*^            | 11/16*^                          | 11/16*^        |  |  |
| 16/16       | 16/16 8/16*        |                                  | 12/16*         |  |  |
| 15/16*      | 15/16* 12/16*      |                                  | 13/16*         |  |  |
| 15/16*      | 15/16* 11/16*^     |                                  | 13/16*^        |  |  |
| 98.1%       | 98.1% 70.0%        |                                  | 76.9%          |  |  |

\* At least once correct combination was not the first valid choice

^ At least once the correct combination was not a valid choice

~ At least once the correct combination was not a choice

### Acknowledgements

- Dr. Theresa Caragine
- Dr. Mechthild Prinz and the OCME Research team
  - Cindy Rodriguez, Troy Holder, and Kathleen O'Connell

• Dr. Teresa Snyder-Lieby and staff of SoftGenetics LLC

- o Justin Godby and Valerie Bostwick
- o Dr. Pamela Staton
- Alyssa Strohbusch
- Emily Fete

### References

- 1. Holland M. M., Parson W. "GeneMarker® HID: A Reliable Software Tool for the Analysis of Forensic STR Data." Journal of Forensic Sciences 2011; 56: 29–35.
- Roger F., Calandro C., Schade L. L. "Improving Forensic DNA Laboratory Throughput Enhanced Data Analysis and Expert Systems Capability." Forensic Magazine February/March 2008.
- 3. Phillips N. "Expert Systems for High Throughput Analysis of Single Source Samples: A Comparison of GeneMarker® HID v1.71 and GeneMapper® ID v3.2 and Validation of GeneMapper® ID v3.2." Theses and Dissertations 2009; Paper 23. <u>http://digitalcommons.hsc.unt.edu/theses/23</u>.
- He H., Snyder-Leiby T., Qi R., Liu J. "Analysis of DNA Mixtures in GeneMarker® HID Software: with or without single source reference samples." SoftGenetics 2009; <u>http://www.softgenetics.com/MixtureAnalysis\_AppNote.pdf</u>.
- 5. Applied Biosystems. GeneMapper® ID-X v1.1 Release Notes. Foster City, Ca: Applied Biosystems 2008.
- 6. Applied Biosystems. GeneMapper® ID-X v 1.0 Reference Guide. Foster City, Ca: Applied Biosystems 2007.
- 7. SoftGenetics. GeneMarker® HID v 1.95 User Manual. State College, PA: SoftGenetics 2010.
- 8. Roby R. "Expert systems help laboratories process DNA samples." NIJ Journal 2008; 16-19.
- Roby R. K., Jones J.P. "Evaluating expert systems for forensic DNA laboratories." Forensic News. Foster City: Applied Biosystems, 2005 at <u>http://docs.appliedbiosystems.com/pebiodocs/00115112.pdf</u>.
- 10. Harbison A., McCabe B., Power T. "FaSTR DNA: A new expert system for forensic DNA Analysis." Forensic Science International 2008; 159-165.
- Butler, John M. *Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers.* Burlington, MA: Elsevier Academic, 2005.